Vertical and Horizontal Asymptotes

(This handout is specific to rational functions $\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomial functions.)
What is an asymptote? An asymptote is a line that the graph of a function approaches.
IMPORTANT: The graph of a function may cross a horizontal asymptote any number of times, but the graph continues to approach the asymptote as the input increases and/or decreases without bound.

IMPORTANT NOTE ON HOLES: In order to find asymptotes, functions must FIRST be reduced. Factor both the numerator and denominator to see if they have any factors in common that can be "cancelled" out. Any factor that "cancels" produces a hole in the graph. A hole exists at a value of x if that value makes both the numerator and denominator equal to zero (0).
Example: $f(x)=\frac{x-2}{x^{2}-4} \Rightarrow \frac{x / 2}{(x / 2)(x+2)} \Rightarrow \frac{1}{x+2}$ This means that the graph of $f(x)$ has a hole when $x=2$ The graphs of $f(x)=\frac{x-2}{x^{2}-4}$ and $y=\frac{1}{x+2}$ are exactly the same except for the hole when $x=2$ on the first graph. Graphing calculators will not show the hole in the first graph, but the table will show an error when $x=2$.

Vertical Asymptotes: These vertical lines are written in the form: $x=k$, where k is a constant. Once a rational function is reduced, vertical asymptotes may be found by setting the denominator equal to zero (0) and solving for the input variable.

Example: $f(x)=\frac{2 x+1}{3 x-6}$
denominator $=0 \Rightarrow 3 x-6=0 \Rightarrow 3 x=6 \Rightarrow x=2$
The graph of $f(x)$ has a the vertical asymptote $x=2$

Example: $g(x)=\frac{1}{x^{2}-4}$
denominator $=0 \Rightarrow x^{2}-4=0 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$
The graph of $g(x)$ has the vertical asymptotes $x=-2$ and $x=2$

Horizontal Asymptotes: These horizontal lines are written in the form: $y=k$, where k is a constant. Because functions approach horizontal asymptotes for very large positive or negative input values, ONLY the terms with the highest degree (largest exponent) in both the numerator and denominator need to be considered when finding the horizontal asymptote. The resulting ratio (fraction) should then be reduced by "cancelling" common factors.

Case	Example	Graph
Case 1: If the result has no variables in the denominator, the function has no horizontal asymptote.	$\begin{gathered} a(x)=\frac{x^{2}+1}{x-3} \\ a(x)=\frac{x^{2}+x^{2}}{2 x \rightarrow 6} \Rightarrow \frac{x^{2}}{2 x}=\frac{x}{2} \end{gathered}$ No horizontal asymptote	
Case 2: If the result is a number, the horizontal asymptote is $y=$ that number.	$\begin{gathered} b(x)=\frac{1-6 x}{3 x+7} \\ \frac{\mathbb{X}-6 x}{3 x+y 2} \Rightarrow \frac{-6 x}{3 x}=-2 \Rightarrow y=-2 \end{gathered}$ The horizontal asymptote is $y=-2$	
Case 3: If the result has no variables in the numerator, the horizontal asymptote is $y=0$.	$\begin{gathered} c(x)=\frac{1+2 x^{2}}{3 x^{3}-4} \\ c(x)=\frac{X+2 x^{2}}{3 x^{3}-4} \Rightarrow \frac{2 x^{2}}{3 x^{3}}=\frac{2}{3 x} \Rightarrow \mathrm{y}=0 \end{gathered}$ The horizontal asymptote is $y=0$	

Final Note:

There are other types of functions that have vertical and horizontal asymptotes not discussed in this handout.
There are other types of straight-line asymptotes called oblique or slant asymptotes.
There are other asymptotes that are not straight lines.
Example graphs of other functions with asymptotes:

