10-3 Transformations of Cube Root Functions

TEKS FOCUS

TEKS (6)(A) Analyze the effect on the graphs of $f(x) = x^3$ and $f(x) = \sqrt[3]{x}$ when f(x) is replaced by af(x), f(bx), f(x - c), and f(x) + d for specific positive and negative real values of *a*, *b*, *c*, and *d*.

TEKS (1)(F) Analyze mathematical relationships to connect and communicate mathematical ideas.

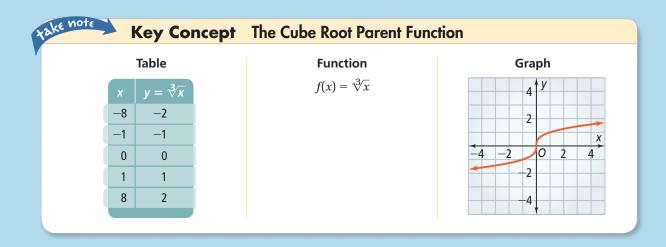
Additional TEKS (1)(D), (2)(A)

ESSENTIAL UNDERSTANDING

The graph of any cube root function is a transformation of the graph of the cube root parent function $f(x) = \sqrt[3]{x}$.

VOCABULARY

 Analyze – closely examine objects, ideas, or relationships to learn more about their nature



e note	Concept Summary	Cube Roo	Func	tion Family
Parent Function $y = \sqrt[3]{x}$				
Translation				
$y = \sqrt[3]{x} + d$		$y = \sqrt[3]{x}$	- <i>c</i>	
d > 0 sh	lifts up $ d $ units	c > 0	shifts	to the right $ c $ units
d < 0 sh	ifts down $ d $ units	c < 0	shifts	to the left $ c $ units
Stretch, Con	npression, and Reflection			
$y = a\sqrt[3]{x}$		$y = \sqrt[3]{bx}$		
a > 1	vertical stretch	b > 1		horizontal compression (shrink)
0 < a < 1	vertical compression (shrink)	0 < b	<1	horizontal stretch
a < 0	reflection across the <i>x</i> -axis	b < 0		reflection across the <i>y</i> -axis

TEKS Process Standard (1)(D)

😽) Problem 1

Analyzing y = f(x) + d for $f(x) = \sqrt[3]{x}$

What is the graph of the functions $g(x) = \sqrt[3]{x} + 2$ and $h(x) = \sqrt[3]{x} - 2$ on the same set of axes as the parent function $f(x) = \sqrt[3]{x}$?

Graph the parent function $f(x) = \sqrt[3]{x}$.

Each *y*-value of $g(x) = \sqrt[3]{x} + 2$ is 2 greater than the corresponding *y*-value of f(x).

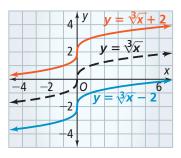
So, g(x) shifts the graph of f(x) up by 2 units.

Each *y*-value of $h(x) = \sqrt[3]{x} - 2$ is 2 less than the corresponding *y*-value of f(x).

So, h(x) shifts the graph of f(x) down by 2 units.

Think

How can you check that your graphs are reasonable? The graphs of *g*(*x*) and *h*(*x*) should be 4 units apart along any vertical line.



Problem 2

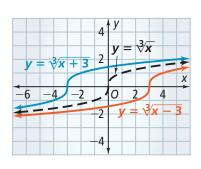
Analyzing y = f(x - c) for $f(x) = \sqrt[3]{x}$

What is the graph of the functions $g(x) = \sqrt[3]{x-3}$ and $h(x) = \sqrt[3]{x+3}$ on the same set of axes as the parent function $f(x) = \sqrt[3]{x}$?

Graph the parent function $f(x) = \sqrt[3]{x}$.

A function of the form $f(x) = \sqrt[3]{x-c}$, where c > 0, is a horizontal translation of the graph of f(x) by |c| units to the right. So, $g(x) = \sqrt[3]{x-3}$ shifts the graph of f(x) to the right by 3 units.

A function of the form $f(x) = \sqrt[3]{x-c}$, where c < 0, is a horizontal translation of the graph of f(x) by |c| units to the left. So $h(x) = \sqrt[3]{x+3}$ shifts the graph of f(x) to the left by 3 units.



Think

How can you check that your graphs are reasonable? The graphs of g(x)and h(x) should be 6 units apart along any horizontal line.

💎) Problem 3

Analyzing y = af(x) for $f(x) = \sqrt[3]{x}$

What is the graph of the given functions on the same

set of axes as the parent function $f(x) = \sqrt[3]{x}$?

A $g(x) = 3\sqrt[3]{x}, h(x) = -3\sqrt[3]{x}$

Graph the parent function $f(x) = \sqrt[3]{x}$.

Each *y*-value of $g(x) = 3\sqrt[3]{x}$ is 3 times the corresponding *y*-value of the parent function. So, $g(x) = 3\sqrt[3]{x}$ stretches the graph of f(x) by the factor 3.

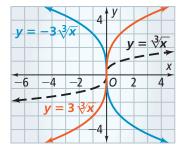
The -3 in $h(x) = -3\sqrt[3]{x}$ reflects the graph of f(x) across the *x*-axis and stretches it by the factor 3.

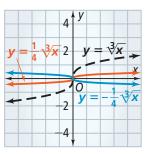
B $g(x) = \frac{1}{4}\sqrt[3]{x}, h(x) = -\frac{1}{4}\sqrt[3]{x}$

Graph the parent function $f(x) = \sqrt[3]{x}$.

Each *y*-value of $g(x) = \frac{1}{4}\sqrt[3]{x}$ is one-fourth the corresponding *y*-value of the parent function. So, $g(x) = \frac{1}{4}\sqrt[3]{x}$ compresses the graph of f(x) by the factor $\frac{1}{4}$.

The $-\frac{1}{4}$ in $h(x) = -\frac{1}{4}\sqrt[3]{x}$ reflects the graph of f(x) across the *x*-axis and compresses it by the factor $\frac{1}{4}$.





Think

How are the graphs of g(x) and h(x) related? The graphs are reflections of each other in the x-axis.

Problem 4

Analyzing y = f(bx) for $f(x) = \sqrt[3]{x}$

What is the graph of the given functions on the same set of axes as the parent function $f(x) = \sqrt[3]{x}$?

A
$$g(x) = \sqrt[3]{0.5x}, h(x) = \sqrt[3]{-0.5x}$$

Graph the parent function $f(x) = \sqrt[3]{x}$.

A function of the form $f(x) = \sqrt[3]{bx}$ where 0 < |b| < 1 is a horizontal stretch of the graph of f(x). So, $g(x) = \sqrt[3]{0.5x}$ stretches the graph of f(x) horizontally.

The -0.5 in $h(x) = \sqrt[3]{-0.5x}$ reflects the graph of f(x) across the *y*-axis and stretches it horizontally.

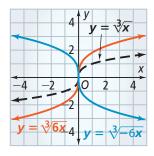
	4	<i>y</i>
	2	$y = \sqrt[3]{x}$
-1 -2		× ×
+	-2	$y = \sqrt[3]{-0.5x}$
$y = \sqrt[3]{0.5x}$	-4	

B $g(x) = \sqrt[3]{6x}, h(x) = \sqrt[3]{-6x}$

Graph the parent function $f(x) = \sqrt[3]{x}$.

A function of the form $f(x) = \sqrt[3]{bx}$, where |b| > 1, is a horizontal compression of the graph of f(x). So, $g(x) = \sqrt[3]{6x}$ compresses the graph of f(x) horizontally.

The -6 in $h(x) = \sqrt[3]{-6x}$ reflects the graph of f(x) across the *y*-axis and compresses it horizontally.



Think

What is the amount of the horizontal stretch? Since b = 0.5 and 0 < |b| < 1, f(x) is horizontally stretched. Notice that f(x) = 2when x = 8, but g(x) = 2when x = 16. So, g(x) is a horizontal stretch of f(x)by a factor of 2.

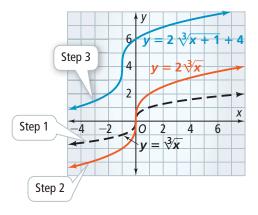
Graphing a Cube Root Function

The function $y = 2\sqrt[3]{x+1} + 4$ models the monthly profit *y*, in thousands of dollars, *x* months after a café opens for business. What is the graph of the function?

Plan

How is $y = a \sqrt[3]{x - c} + d$ related to its parent function? The factor *a* vertically stretches or compresses the parent function while *c* and *d* translate it horizontally and vertically.

- **Step 1** Graph the parent function $y = \sqrt[3]{x}$.
- **Step 2** Multiply the *y*-coordinates by 2. This stretches the graph vertically.
- **Step 3** Translate the graph 1 unit to the left and 4 units up.
- **Step 4** In this situation, the domain is $x \ge 0$. Redraw the graph in the first quadrant only.



PRACTICE and APPLICATION EXERCISES

For additional support when completing your homework, go to **PearsonTEXAS.com**.

Graph each transformation of the parent function $f(x) = \sqrt[3]{x}$ on the same set of axes as the parent function. Analyze the effect of the transformation on the graph of the parent function. 1. $g(x) = \sqrt[3]{x} + 4$ 2. $g(x) = \sqrt[3]{-3x}$ 3. $g(x) = -2\sqrt[3]{x}$

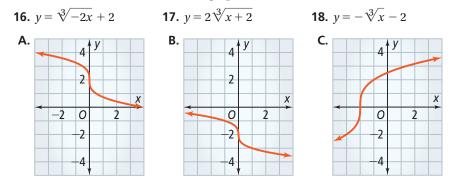
$g(x) = \sqrt{x} + 4$	2. $g(x) = \sqrt{-3x}$	5. $g(x) = -2 \sqrt{x}$
4. $g(x) = \sqrt[3]{x} - 1$	5. $g(x) = \sqrt[3]{\frac{1}{4}x}$	6. $g(x) = \frac{1}{3}\sqrt[3]{x}$
7. $g(x) = \sqrt[3]{-\frac{1}{10}x}$	8. $g(x) = \sqrt[3]{x+3.5}$	9. $g(x) = \sqrt[3]{x-1.5}$

- **10.** The function $y = -2\sqrt[3]{x+4} + 8$ models the price *y* of one share of a company's stock, in dollars, *x* months after the stock became available.
 - **a.** Describe a sequence of transformations you can use to graph the function if you start with the graph of the parent function $f(x) = \sqrt[3]{x}$. Graph the function.
 - **b.** What does the graph tell you about the price of the company's stock?
 - **c.** Do you think the function is a good model of the stock's price for any number of months? Explain.
- **11. Explain Mathematical Ideas (1)(G)** Your friend said the graph of $g(x) = \sqrt[3]{-x}$ is a reflection of the graph of the parent function $f(x) = \sqrt[3]{x}$ in the *x*-axis. You said the graph of g(x) is a reflection of the graph of the parent function in the *y*-axis. Who is correct? Explain.

The graph of g(x) can be obtained from the graph of the parent function $f(x) = \sqrt[3]{x}$ by using the given transformations. Write an equation for the function g(x).

- **12.** Reflect the graph in the *x*-axis, then translate it 2 units right.
- **13.** Vertically compress the graph by a factor of $\frac{1}{3}$, then translate it 4 units left and 1 unit up.
- **14.** Vertically stretch the graph by a factor of 6, then translate it 1 unit right and 7 units up.
- **15.** Horizontally stretch the graph by a factor of 2, then translate it 2 units down.

Match each function with the correct graph.



- **19.** Analyze Mathematical Relationships (1)(F) The function $y = 0.5\sqrt[3]{x-2} + 3$ models the annual revenue *y* of a software company, in millions of dollars, *x* years after 2000.
 - **a.** Describe a sequence of transformations you can use to graph the function if you start with the graph of the parent function $y = \sqrt[3]{x}$.
 - **b.** Graph the function.
 - c. What does the graph tell you about the company's annual revenue since 2000?

Determine whether each statement is always, sometimes, or never true.

- **20.** For *a* not equal to zero, the graph of $f(x) = a\sqrt[3]{x}$ rises as *x* increases.
- **21.** The graph of $f(x) = \sqrt[3]{x} + d$ has 180° rotational symmetry around a point on the *y*-axis.
- **22.** You can draw the graph of $g(x) = \sqrt[3]{x-c}$ by translating the graph of the parent function $f(x) = \sqrt[3]{x}$.
- **23.** The graph of $g(x) = -\sqrt[3]{x} 1$ passes through the point (*a*, 0), where a > 0.
- **24.** For real numbers *m* and *n*, with $m \neq n$, the graph of $f(x) = \sqrt[3]{x-m}$ intersects the graph of $g(x) = \sqrt[3]{x-n}$.

TEXAS Test Practice

25. Which function has a graph that is not a translation of the graph of the parent

function $f(x) = \sqrt[3]{x}$?	
A. $g(x) = \sqrt[3]{x - 3.7}$	C. $g(x) = \sqrt[3]{3.7x}$
B. $g(x) = \sqrt[3]{x} + 3.7$	D. $g(x) = \sqrt[3]{x+3.7}$

26. Which function has a graph that intersects the negative *x*-axis?

F. $f(x) = \sqrt[3]{x} + 8$	H. $f(x) = \sqrt[3]{8x}$	
G. $f(x) = -\sqrt[3]{x} + 8$	J. $f(x) = \sqrt[3]{x-8}$	

27. You graph the function $f(x) = \sqrt[3]{x}$. Then you reflect the graph across the *x*-axis, stretch the graph vertically by a factor of 2, and then translate the graph 2 units to the right. Which of the following is an equation for the resulting graph?

A. $y = -2\sqrt[3]{x+2}$	C. $y = -2\sqrt[3]{x-2}$
B. $y = -2\sqrt[3]{x-2}$	D. $y = \sqrt[3]{-2x} + 2$

28. Explain how the graph of $g(x) = 4\sqrt[3]{x-1}$ is related to the graph of $h(x) = 4\sqrt[3]{x+4}$.

